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Abstract* 
Methods for performing channel and session compensation in 
conjunction with subspace techniques have been a focus of 
considerable study recently and have led to significant gains in 
speaker recognition performance. While developers have 
typically exploited the vast archive of speaker labeled data 
available from earlier NIST evaluations to train the within-
class and across-class covariance matrices required by these 
techniques, little attention has been paid to the characteristics 
of the data required to perform the training efficiently. This 
paper focuses on within-class covariance normalization 
(WCCN) and shows that a reduction in training data 
requirements can be achieved by proper data selection. In 
particular, it is shown that the key variables are the total 
amount of data and the degree of handset variability, with total 
calls per handset playing a smaller role. The study offers 
insight into efficient WCCN training data collection in real 
world applications. 
Index Terms: channel compensation, i-vectors, within-class 
covariance, hyperparameter training 

1. Introduction
The recent development of low dimensional vector 
representations of speech utterances has led to considerable 
improvement in the performance of speaker recognition 
systems submitted to NIST’s periodic speaker recognition 
evaluations. In particular, the i-vector method, which models 
the speech utterance in a total variability subspace, has 
emerged as the predominant approach [1]. Of equal 
importance is the robustness of the recognizer to channel and 
session variability, an area that has a long history of 
development. Classical feature domain techniques that have 
become standard components of many feature extraction front-
ends include cepstral mean subtraction, RASTA, feature 
normalization, feature mapping, and feature warping [2-6]. 
With the introduction of i-vectors and their low dimensional 
property, advanced techniques that model the channel/session 
subspace of utterances, such as nuisance attribute projection 
(NAP), within-class covariance normalization (WCCN), linear 
discriminant analysis (LDA), probabilistic linear discriminant 
analysis (PLDA), and length normalization [7-10] have given 
researchers effective tools for performing channel and 
intersession compensation. These latter methods, which 
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require the estimation of a within-class and, in some cases, 
between-class covariance matrices, rely on the availability of 
multiple utterances from a large population of speakers. 
Fortunately, participants in NIST evaluations have access to a 
repository of legacy data from earlier tests that contains large 
quantities of labeled speaker data, including numerous 
instances of utterances recorded by a single speaker using the 
same or different phone numbers. This resource allows 
participants to evaluate compensation techniques and assess 
their effectiveness simply by using all the available data or a 
subset obtained during the development cycle. The system is 
thus tuned for optimum performance, and in subsequent 
evaluations more legacy data becomes available and the 
process is repeated. 

Although this procedure has been effective, it has two 
drawbacks. First, little if any understanding is gained as to the 
required characteristics of the compensation training data, and 
second, the process will not necessarily be sustainable for real 
world applications where acquisition of such training labeled 
data may be expensive. To our knowledge, little if any 
attention has been paid to the problem of the efficient 
collection and selection of compensation data, and we have 
thus designed a series of experiments to gain insight into this 
issue. Results indicate that the key variables are the total 
amount of data and the degree of handset variability, with total 
calls per handset playing a smaller role. 

The remainder of the paper is organized as follows: 
Section 2 provides a description of the speaker recognition 
system, the corpus used, and the experiment design. Section 3 
describes a series of experiments designed to reveal 
underlying desirable properties for a compensation training 
corpus. Section 4 details results of applying the guidelines to 
the development data and to a held-out set, and Section 5 
presents a summary of the results and suggestions for future 
work. 

2. System and data

2.1. Recognizer 
The system architecture used in this study consisted of an i-
vector generator followed by within-class covariance 
normalization (WCCN) and cosine scoring. The decision to 
focus exclusively on WCCN rather than methods requiring 
both within-class and across-class normalization (e.g., LDA, 
PLDA) was motivated by the desire to avoid the complexity of 
coupling effects when using both within-class and across-class 
matrices. In addition, our studies and those of others have 
shown that WCCN alone produces a substantial performance 
gain, albeit not as great as the gains achieved by using both 
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covariance matrices. Support for this choice will be provided 
in the results section. 

Speech segments were first extracted from the utterances 
using speech activity detection (SAD) based on GMMs trained 
on telephone speech. Mel-frequency cepstral coefficient 
(MFCC) features were then computed from the speech signal 
using a mel-spaced filterbank comprising 20 triangular filters 
whose center frequencies spanned the range of 300-3140 Hz. 
Delta cepstra were computed over a ±2 frame span and 
appended to the cepstral vector, and each component of the 
resulting 40-dimensional feature vector was normalized to 
have zero mean and unit variance. Finally, the utterance 
feature vectors were converted to i-vectors using a 2048-order 
Universal Background Model (UBM) and a rank-600 total 
variability (T) matrix. 

The estimated within-class covariance matrix was 
computed via [1] 
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denotes transpose. 

The purpose of WCCN is to deemphasize directions of the 
estimated within-class space with high variance. All directions 
of the space are retained, unlike NAP or LDA where directions 
of the space are projected away. 

2.2. Experiment corpus 
Development data for this study consisted of male telephone 
utterances chosen from previous NIST evaluations. Training 
data for the UBM and T-matrix was obtained from the NIST 
Switchboard 2 phases 2-5 and SRE04/05/06 utterances from 
male speakers having a minimum of eight calls per speaker, 
totaling 15559 utterances from 1115 speakers. Training sets 
for the WCCN matrix were selected from the SRE04/05/06 
male speaker utterances, totaling 7252 files from 514 speakers. 
Enrollment and test data utterances were obtained from SRE08 
and consisted of 479 male speakers with 3 calls/speaker for 
enrollment and 895 utterances for test (NIST’s SRE08 “3conv-
train short3-test” condition). Speaker models were created by 
averaging the i-vectors of the individual training utterances 
prior to performing WCCN. Enrollment utterances totaled 
1437 files and test utterances included 708 target trials and 
8688 nontarget trials. Test utterances were never from the 
same phone numbers as enrollment utterances. 

The availability of metadata information for the NIST 
utterances allowed for a more detailed study of selection 
criteria for WCCN training. Among the metadata fields 
available, the phone number associated with each call 
appeared to be the most relevant as it could serve as a proxy 
for handset variability. In the WCCN training data, the number 

of different phone numbers used by a speaker ranged from 1 to 
17, with a median of 5. 

Figure 1 shows the histogram of the WCCN training data 
plotted vs. the number of speakers available with a fixed 
number of calls. By design, this set includes only those 
speakers who made 8 or more calls. Generally, the speakers 
made between 8 and 28 calls, with a couple of outlier speakers 
who made 33 and 51 calls. In many experiments, multiple 
draws (between 5 and 30) were taken from the pool of data in 
order to establish statistical significance in the final result and 
to illustrate variability. 

Figure 1: Profile of data available for training the WCCN 
matrix. 

3. Experiments 

3.1. Amount of Data 
A series of experiments was conducted to obtain performance 
baselines and to measure the sensitivity to varying amounts of 
WCCN training data. This was achieved by adjusting the total 
number of speakers used during training while maintaining the 
histogram profile. For example, for a 50% training run, half 
the speakers from each of the histogram bins were drawn 
randomly and all their calls were used in training. Figure 2 
shows system performance for percentages between 20% and 
90%, where each point represents the equal error rate for 
scores merged from 30 random draws of the data. The “100%” 
label represents utilization of all the data and the “0%” label 
represents using no data (i.e., no WCCN). The plot indicates 
that for this configuration, WCCN produces a considerable 
improvement in performance, with additional benefits trailing 
off when using calls from more than approximately 50% of the 
available speakers. The result indicates that baseline 
performance is achieved using 3626 calls from 257 speakers. 

Figure 3 shows DET plots using of 100% of the WCCN 
training data, 50% of the data (3626 utterances from 257 
speakers), and no data (0%). The plot for 50% was obtained by 
merging scores from 20 random draws, with the DETs for the 
individual draws shown superimposed to illustrate the degree 
of variability in the result. Figure 4 provides further 
confirmation that fewer utterances than are available for 
training are needed to achieve performance equivalent to the 
100% baseline, and this observation encouraged further 
investigation of factors in the WCCN training data that could 
influence recognition performance. 



3.2. Phone number variability 

To examine the impact of handset variability within the 
WCCN training set, we first constructed an experiment where 
we limited the number of handsets (phone numbers) per 
speaker to one. Such a situation may arise when recruited 
speakers or data from a found corpus were not explicitly 
controlled to include multiple handsets per speaker; indeed it 
is most likely that speakers will use a single personal mobile 
phone. The resulting training list contained 4467 calls (62% of 
total) from 503 speakers, with same-number calls/speaker 
ranging from 4 to 19. As is clear from Figure 4, recognition 
performance is adversely affected in the absence of sufficient 
diversity in the training data and is considerably worse than 
using no within-class compensation at all. 

 

 
Figure 2: Performance (EER) for varying percentages of 
WCCN training data. Each point from 20% to 90% is the 
result of merging runs from 30 random draws of the data. All 
utterances were used for the selected speakers. 

Figure 3: Performance using calls from 20 random draws of 
50% of the speakers in the WCCN training set while 
maintaining the original call/speaker distribution. 

It is clear from the previous experiment that insufficient 
handset variability in WCCN training has a negative effect on 
speaker recognition performance. To quantify the importance 
of phone number variability, WCCN training lists were 
selected from the corpus as follows: 

• Choose speakers who made calls from 3 or more phone 
numbers 

• Randomly select a single call from each phone number 
for each such speaker. 

• Create 10 lists using these conditions. 
Each list comprises 2122 calls (29% of the total) from 325 
speakers (63% of the total). Results using merged scores from 
the 10 lists indicate that performance nearly equivalent to that 
of the 100% usage baseline can be achieved over large regions 
of the DET plot (Figure 5). We note that performance appears 
to diverge in the low false alarm region, although data in this 
area is very sparse. It was also found that performance 
improved marginally when 1-2 calls per phone number were 
selected (multiple calls were not always available for all phone 
numbers). 
 

 
Figure 4: Performance using all calls from a single phone 
number for each speaker. 

4. Proposed selection criteria 
The results described above can be summarized as follows: 
• Incorporating phone number diversity in the WCCN 

training data is a key factor in influencing speaker 
recognition performance. Results indicate that using one 
call from 3 or more phone numbers is sufficient to 
achieve baseline performance. 

• Given a diverse set of phone numbers, performance is 
weakly related to the number of calls per phone number, 
with improvement decreasing rapidly beyond 1 or 2. 

• All other factors being equal, a total of 3000-3500 calls 
appears to be sufficient to achieve baseline results. 

• These conclusions led to a proposed data selection rule of 
thumb called the “3-3-3 Rule,” which posits that optimum 
WCCN performance requires training data from 3 or 
more phone numbers per speaker, at most 3 calls per 
phone number, and 3000 total calls. While not called for 
based on the experiments of Section 3, requiring more 
than a single call per phone number would likely add 
robustness in real world applications. With precisely 3 



phone numbers per speaker, the total number of speakers 
required would be 333. 

Since there was insufficient WCCN training data of this type 
to test the guideline, the rule was adjusted to accommodate the 
limitations of the corpus. Thus, 5 random sets were drawn 
from the WCCN training set from speakers with 3 or more 
phone numbers and 1-3 calls per phone number, for a total of 
3449 calls (48% of total) from 372 speakers (72% of total). 
Results, shown in Figure 6, indicate that this selection strategy 
does indeed achieve performance equal to that of the 100% 
baseline. 

 
Figure 5: Performance using 10 random draws from the 
original WCCN training set with 1 call per phone number 
from speakers with 3 or more phone numbers. 
 

The results in Figure 6 were obtained from the 
development set. To evaluate the guidelines on a held-out set, 
the 3-3-3 Rule was applied to the female counterpart of the 
corpus, none of which was used during the development 
phase. Characteristics of the female speaker data are as 
follows: 
• Training for UBM and T-matrix: Switchboard 2 and 

SRE04/05/06, female speakers only, minimum 8 
calls/speaker, total 29978 files from 2211 speakers. 

• Training for WCCN matrix: As above but SRE files only, 
total 9961 files from 731 speakers. 

• Enroll: 894 speakers, 3 calls/speaker, 2681 files total. 
• Test: 1678 calls, total 1444 target trials and 17312 

nontarget trials. 
Using only speakers with a minimum of 3 phone numbers, 
calls were drawn such that each speaker contributed 3 calls 
from 1 phone number and 1 call from the remaining 2 phone 
numbers. This selection process yielded a total of 2645 calls 
(27% of the total) from 529 (72%) speakers. Ten random sets 
corresponding to these conditions were created. Results are 
shown in Figure 7, again comparing DET plots for the merged 
random draw scores to those from the 100% and 0% runs on 
the female data. Results again indicate that baseline 
performance can be achieved using a significantly smaller 
amount of carefully selected WCCN training data. 

5. Conclusions 
Results of this study lead to the following conclusions: 

• Data requirements for WCCN matrix training can be 
reduced by careful selection of material. 

• The key factors in WCCN data selection are speaker and 
handset variability, with phone number information 
serving as a proxy for the latter in the current study. Only 
a few phone numbers are needed, with 1-3 calls per 
phone number. The total number of calls should be in the 
vicinity of 3000-3500. In the experiments described in 
this paper, the total number of speakers was 372 and 529. 

• Applying within-class covariance normalization with data 
from many speakers but little or no phone number 
diversity can be worse than not applying WCCN at all. 

Future work in this area should include evaluating these 
guidelines on additional held-out data, repeating these studies 
for other common normalization methods (e.g., across-class 
normalization), and investigating these factors jointly across 
more than one normalization method. 

 

 
Figure 6: Results obtained by applying the 3-3-3 Rule to the 
WCCN training data, with modifications dictated by the 
available data. 

 
Figure 7: Results obtained by applying the 3-3-3 Rule 
to the held-out female data. 
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